The Problem of Robot Random Motion Tracking
Learning and Quantum Algorithms

Carlos Rodriguez Lucatero

Universidad Iberoamericana Campus Ciudad de México,
Direccién de Anilisis e Informacién Académica,
Prolongacién Paseo de la Reforma 880 Lomas de Santa fe
Ciudad de México, México, 01210
carlosr.lucatero@uia.mx, profesor. lucateroegmail .com

Abstract. The paper studies the problem of tracking a target robot that moves
following a random walk strategy, by constructing in the observer robot a
model of the behaviour of the target. The strategy of the target robot is
supposed to be a random generator of movements. We make the assumption
that the robot motion strategies can be modelled as uniform random generator
of movements. We suppose that the observations are noise free. We will
explore the hardness of the problem of trying to predict the numbers generated
by a uniform random generator and relate this problem with our motion
tracking problem. We explore too the use of quantum algorithms as a way to
deal with some complexity hardness problems that arise when we try to predict
the movements of a target robot that moves randomly.

1. Introduction

In a previous article [1] we have talked about the learning algorithms of robot motion
tracking problem under the assumption that the strategy followed by the target robot
as well as the observer robot was a DFA (DETERMINISTIC FINITE AUTOMATA).
In this article, the agents observed the actions taken by the other agents, and try to
predict the behaviour of them and react in the best possible way by means of the
construction of a model of the behaviour of the farger that was obtained by the
automata learning algorithm obtained in this work. This was possible in a
computationally tractable way because the DFA obtained was not minimal in the
number of states. The fundamental assumption about the computational power of the
agents was that they were limited in their computational power. Because of that we
proposed in [2] to state the robot tracking problem as a repeated game. The solution
obtained in [2] outperform the solutions proposed in [4] [5] and [7] given that our
assumptions about the behaviour of the implicated agents were more general than the
evading strategy of the farget in the articles cited just before. In the seminal paper on
complexity and bounded rationality written by Christos H. Papadimitriou and M.
Yannakakis [17] it was analyzed the complexity of calculating the Nash equilibrium
(the best strategy for the two players) of a two player game in the case of agents with
limited rationality. In [17] Papadimitriou studied the Nash equilibrium of classical
game theory prisioner’s dilemma and observed that there is paradox on the non-

© G. Sidorov, B. Cruz, M. Martinez, S. Torres. (Eds.) Received 29/03/08
Advances in Computer Science and Engineering. A ccep{ed 26/04/08
Research in Computing Science 34, 2008, pp. 209-221 Final version 30/04/08

210 Rodrigues Lucatero C.

cooperative Nash equilibrium strategies of the players that is opposed to the social
experience of cooperative behaviour showed by Axelrod in [18]. Papadimitriou argues
that a good measure of the limited computational power (limited rationality) can be
the number of states of the automata exccuted by each player. Depending on that the
players can tend to play cooperatively (cooperative Nash equilibrium). One
computational complexity obstacle for obtaining efficient leamning algorithms is
related with the fact of being a passive or an active learner. In the first case it has been
shown the impossibility to obtain in the worst case an efficient algorithm [20][21]. In
the second case if we permit the learner to make some questions (i.e. to be an active
learner) we can obtain efficient learning algorithms [3] . This work done on the DFA
(DETERMINISTIC FINITE AUTOMATA) learning area has given place to many
excellent articles on learning models of intelligent agents as those elaborated by David
Carmel & Shaul Markovitch [23] [24] and in the field of Multi-agent Systems those
written about Markov games as a framework for multi-agent reinforcement learning
by M.L. Littman [6]. In the present work we will try to approach the same robot
motion tracking problem stated in [1] [2] but now the assumption on the behaviour is
that the robots follow a random walk strategy. When we talk about a random walk
strategy we mean that the robots toss coins for calculating their next move. In the
present work we are assuming again that observed moves are not noisy and that the
calculation power of each agent is limited. So we have to talk about the computing
complexity that we have to face when we want to predict the next move of an agent
that has this type of behaviour. For this end we will start our exposition by making
some definitions about pseudo-random functions and pseudo-random behaviour.
Given that the agents behave randomly we will give a rough description of how to
construct random functions as well as how to use them for constructing random
strategies. Because of that we have to talk about the complexity challenges implied
while one try to predict the next move of a target robot that moves randomly and as
will be shown later it is a hard to solve problem, said otherwise, it doesn’t exist a
deterministic polynomial time algorithm for solving it. As we will see this problem is
related to the problem of decryption of RSA (RIVEST, SHAMIR & ADELMAN
ENCRYPTION PROTOCOL) that at the same time is related with discovering the
prime factors of a number. It has not be discovered a deterministic polynomial time

algorithm for this last problem and because of that it belongs to the NP complexity
class, but at the same time it has not been proved that it is NP —complete neither.

Consequently we will propose a way to cope algorithmically with that complexity
under some new theoretical computing model assumption.

2. How to Implement Pseudo-random Strategies

Randomness has attracted the attention of many computer scientists over the last
twenty years. One of the firsts subjects about that interested the researchers was how
to measure the string randomness. This give place to the Kolmogorov string
randomness notion, which can be defined as the length of the shortest description of a
string. In a more recent approach, it has been emerged the computational complexity
based notion of polynomial randomness measure of a string, that can be defined as

The Problem of Robot Random Motion Tracking Learning and Quantum Algorithms 211

follows. A set S of strings is polynomial random if programs running in polynomial
time produce the same results when fed either with elements randomly sclected in S
or with string selected randomly from the set of all the strings. It means that there
exist a polynomial time algorithm that, upon input of a k-bit string, outputs a poly(k)-
bit string, such that, if one-way function exist, then the set of all output strings is poly-
random. Under this approach of string randomness a function is called poly-random if
no polynomial time algorithm, asking for the values of the function at chosen
arguments, can distinguish the computed values of the function and values given by an
independent coin flips. Based on the existence of a one way function, it can be

defined the poly-random collection as a set of all functions H : I, > I, where "

is the set of all k-bit strings. The cardinality of H, is 26 ¢ we need k2 for the
specification of this set which is impractical for moderate values of k. In [25] they
cope with this problem by randomly selecting for all k a subset & « S H, of
cardinality 2% that belongs to the collection A in such a way that each element of

this collection has a unique k-bit index function. The objective of [25] was to make
random functions accessible for applications, being of easy evaluation and hard to

distinguish from random chosen functions in H . They achieve this goal by choosing
functions from a multiset F, (whose elements are in H,) where the collection

F= {Fk} has the properties of indexing, Poly-time evaluation and pseudo-
randomness. The pseudo-randomness property means that no probabilistic polynomial
time algorithm in k can distinguish the function in Fk from the functions in H -
These functions just mentioned are equivalent to the cryptographically strong
pseudorandom bit generators (CSB generators) defined in [22] but outperform them in
the sense that they save coin tosses and storage in polynomial time computation with
random oracle. A CSB generator is efficient deterministic program that stretch a

random k-bit-long input seed to a k'-bit‘long output pseudorandom sequence, for
some ¢ > 0, indistinguishable from a true randomly generated string in polynomial
time. The pseudo-random sequence must have some statistical properties present in
true random sequences as for example, having the same number of 0’s and 1’s. In [22]
Shamir presents a pseudorandom number generator for which computing the next
number in the sequence from the preceding ones is as hard as inverting the RSA
function. For the sake of clarity we will give some definitions and results obtained in
[25] without demonstration.

Definition of Multiset: Let 4 be a be a multiset with distinct elements al,K a,

occurring with multiplicities m,,K m,, respectively. Then | A| =Z’f| m; . By

=
writing @ €, A, we mean that the element @ has been randomly selected from the
multiset A4 . That is, an element occurring in A with multiplicity m is chosen with
probability "’/E A[-

212 Rodrigues Lucatero C.

Definition of CSB Generator: Let P be a polynomial. A CSB generator G is a
deterministic poly(k)-time program that stretches a 4-bit long randomly selected sced
into a P(k)-bit long sequence (called CSB sequence) that passes all next-bit-tests: Let
P be a polynomial, S, a multiset consisting of P(k)-bit sequences and

S =, S, . A next-bit-set for S is a probabilistic polynomial time algorithm T
that on input & and the first / bits in a string 5 €, S, outputs a bit b. Let pj

denote the probability that b equals the i+ 1st bit of 5. We say that S passes the
next-bit-test T if, for all polynomials Q, for all sufficiently large &, and for all

integers i € [O,P(k));
L P
& 2'< o)

It exist a more general kind of test called polynomial-time statistical test where the

condition change as follows
s R 1
Pr —Px|{< 7
| a0
where pf denotes the probability that T outputs 1 on P, (k) randomly selected
strings in S, and pf represents the probability that T outputs 1 on P, (k)

random bit strings, each of length P(k) .
We say that a multiset S =\, S, is samplable if there is a probabilistic polynomial-

time algorithm that, given as input & , outputs s €, S, .

Definition of one-way function: Let D, < I, . Let f, : D, = D, be a sequence
of functions and let the function f defined as follows: f(x) = f (x) if x € D,.
Let f' denote f applied i times. Let D, < D, such that y € Diify=fi(x)
forsome x € D,. f is a one-way function if

1) f polynomial time computable;
2) f is hard to invert; that is, for every probabilistic polynomial-time algorithm A

and for all sufficiently large k , forevery 1<i < k3, A(x) # fk-] (x) for at least a
constant fraction of X € Dj ;

3) UU‘, is samplable.

The Problem of Robot Random Motion Tracking Learning and Quantum Algorithms 213

3. Hardness of a Random Robot Motion Tracking

After all those dcfinitions we can now resume the main results of [25] that will allow
us to grasp the computational hardness on the prediction of the bits generated by
uniform random function. This will enable us to formally base our statements about
the computational complexity of the robot motion tracking problem when the target
robot follows a random motion strategy. We will list the results obtained in [25] as
follows.
Result 1: Let S =\U, S, be a samplable multiset of bit sequences. The Jollowing
statements are equivalent:
i. S passes the next-bit-test.
ii. S passes all polynomial-time statistical tests for strings.
iii. S passes all polynomial-time statistical tests whose input consists of a single
string in S . (Rem. CSB sequences pass all polynomial time statistical tests)

Result 2: There exists a one-way function if and only if there exists a CSB generator.
This last result allow us to ensure the construction secure CSB generators. Given that
a CSB generator can be constructed explicitly if one wa
random collections.

Result 3 (main theorem): Let F be a collection of functions constructed using a CSB

generator G . Then F passes all polynomial-time statistical tests Jor fi
lend us to the last result in [25] that we state as follows.

Result 4: Let F = {F k } be a collection of functions satisfying the indexing, and the

polynomial-time evaluation conditions of a poly-random collection. Then F cannot
be polynomially inferred if and only if it passes all polynomial-time statistical tests Jor
Jfunctions. This last result give us the main argument concerning the computational
complexity of random robot motion tracking problem. So based in the preceding
random function construction results we are able to state formally the next
affirmation.

y functions exist, so can poly-

inctions. This

Theorem 1: The problem of tracking a target robot that behaves randomly cannot be
learned in polynomial-time.

Proof: The strategy followed by the target include a call to a random JSunction. Then
we can predict the next move of the target if and only if we can predict the next
number generated by a random function. So given that it is not polynomially
predictable then the theorem is proved.

As we have done in [1] we assume that each robot is aware of the other robot actions,
ie. 2%, X are common knowledge while the preferences u°,u" are private. It is
assumed too that each robot keeps a model of the behaviour of the other robot. The
strategy of each robot is adaptive in the sense that a robot modifies his model about
the other robot such that the first should look for the best response strategy w.r.t. its
utility function. Given that the search of optimal strategies in the strategy space is very
complex when the agents have bounded rationality it has been proven in [10] that this
task can be simplified if we assume that each agent follow a DFA strategy. For more

214 Rodriguez Lucatero C.

details about our DFA learning algorithm see [1].

4. Relation between CSB Generators and Decryption of RSA

In this section we will roughly describe the relation that exist between CSB generators
and RSA (RIVEST, SHAMIR & ADELMAN ENCRYPTION PROTOCOL) as a
formal tool to base our algorithmic proposed solution to deal wit the random robot
motion tracking problem. For this end we will mention some issues that were studied
in [22) conceming the generation of CBS sequences. In the seminal work on
cryptography done by Adi Shamir in [22] he shows how to generate from a short
random seed a long sequence of pseudo-random numbers that he called CSB
sequences, based on the RSA cryptosystem. He related the notion of unpredictability
with the property of the sequences of being cryptographically strong. He decfined
additionally the notion of cryptographic knowledge as computed knowledge, that is,
as the ability to compute the desired value within certain time and space complexity
bounds. He related the one-way functions with the easy to compute permutations on
some finite universe U that are everywhere difficult to invert. That is, given a one-
way function f, generate a long pseudo-random sequence of elements of U , by the
application of f to a standard sequence of arguments derived from some initial seed
S, for example S,S+1,5+2,K . The difficulty of extracting S from a single
value f(S +i) is guaranteed by the one-way nature of f.In [22] is given as an
example of a good one-way function, the RSA encryption function
E,(M)y=M K (mod N). Concering this function Shamir shows that it can give
degenerate results if it is applied to the sequence M =23,4,5,6,K and that this
can be corrected if applied to the sequence M =2,3,5,7,K . For the sake of
avoiding degenerancies he proposed an iterated application of [to the secret seed
S in conjunction of the XOR operator denoted by @ . Based on that Shamir stated
the following lemma.

Lemma 1: I f is a one-way function, then a new element of the sequence cannot be

computed from a single known element.

Given that the @ operator scrambles the sequences making impossible the proofs in
more complex situations, he proposed the RSA public-key encryption function with
modulus N that maps the secret cleartext A/ under the publicly known key K to
M* modN . The corresponding decryption function recovers the cleartext by
taking the K -th root of the ciphertext (mod N) The cryptographic security of RSA
cryptosystem is thus equivalent by definition to difficulty of taking root modN .
When N is a large composite number with unknown factorization, this root problem
is believed to be very difficult, but when his factorization (or the Euler function
@(N)) is known an K is relative prime to @(/N), there is a fast algorithm for

The Problem of Robot Random Motion Tracking Learning and Quantum Algorithms 215

solving it. Each pseudo-random sequence gencrator consists of a modulus N and
some standard easy-to-generate sequence of keys K, K,,K such that ¢(N) and

all the K;’s are pairwise relative prime. In order actually to gencrate a pseudo-

random sequence of values R,,R,,K the two parties choose a random sced S and
use their knowledge of @(N) to compute the sequence of roots

R, = S"¥ (mod N),R, = §V*: (mod N),K

The security of this scheme depends only on the secrecy of the factorization of N .
Because of that we can take state the equivalence between the factorization of a
number /N and the numbers generated by CSB generators. That is, if we consider that
the random robot motion strategies use CSB generators for calculating the next move,
we will be able to predict or learn the next move of the target robot in polynomial-

time, if and only if we can obtain in polynomial-time the prime factorization of a
number.

5. Discretization of the Workspace and Pseudo-random Actions

First of all we have discretize the directions to 9 possibilities (N, NW, W, SW, S, SE,
E, NE, STOP). The second constraint is on the discretization of the possible situations
that will become inputs to the automata of both robots. It must be clearly defined for
each behavior what will be the input alphabet to which will react both robots. This
can be done without modifying the algorithm The size of the input alphabet impact
directly the leaming algorithm performance, because it evaluates for each case all
possible course of action. So, the table used for learning grows proportionally to the
number of elements of the input alphabet. For more details about the construction
algorithm see [1]. The discretization mentioned in the preceding paragraph constrains
the set of values that can be given as output of a random robot motion strategy.

6. The Quantum Algorithm for the Random Robot Motion
Tracking

As we have seen in the section 3 and 4 if take into account that the random
movements of the target are generated by CSB generators there is no hope to predict
in polynomial-time the next move of the target. The problem here is that under the
standard Turing machine theoretical calculation model (TM for short), it has not yet
been discovered a polynomial-time algorithm for the prime factorization problem, and
it is conjectured that it doesn’t exist. By other side, there is relatively new theoretical
computer science field called Quantum Computing. Roughly speaking, this new field
propose to replace the Newton physics operation based Turing Machine theoretical
model by a Quantum physics operation based Turing Machine denoted as QTM
(QUANTUM TURING MACHINE). The QTM has some extra features as for

216 Rodrigue= Lucatero C.

example, the capability of being in many states simultaneously. These new featurcs
give place to some hopes concemning the possibility to solve in polynomial-time with a
QTM (QUANTUM TURING MACHINE) some very complex unsolvable in
polynomial time under the standard TM model. For the moment it has not yct been
proved that a QTM can solve NP-complete or NP-hard problems in polynomial-time
but some progress has been made in the last twenty years in the conception of
polynomial-time algorithms for solving some less hard problems that belong to the NP
complexity class. Such is the case of the prime factorization problem. This algorithm
was proposed by Peter W. Shor in [9] and solves the prime factorization problem in
expected polynomial-time. Quantum algorithms are methods using quantuin networks
and processors to solve algorithmic problems. Quantum algorithms have been
developed utilizing the power of quantum evolution, especially of such quantum
phenomena as quantum superposition, parallelism and entanglement. For solving the
prime factorization problem with a QTM algorithm, some number theory problems as
integer factorization and the calculation of the order or period of a function

Ey (M) = M* (modN), that is, to find the smallest K st. M* =1mod N,
must be solved in polynomial-time. For the first problem the ged solve it in
O(log N), and for the second we have to exploit the parallelism of a QTM and use

the QFT (Quantum Fourier transform). The key idea of the Shor’s algorithm is to
relate the calculation of the period of a function with the prime factorization problem

using the QFT.
In [9] Shor uses as computational model the quanfum acyclic circuit that can compute

in polynomial time the same functions that can be calculated by a Quantum Turing
Machine model if a small probability errors allowed. This means that the class of
functions polynomial time computable with a small probability error does not depend
on the exact architecture of the quantum computer, what implies that the complexity
class BPQ (by analogy with the classical complexity class Bounded Probabilistic
Polynomial time or BPP) is robust. In a system with # components having two states
can be described in classical physics completely by # bits whereas in quantum
physics it requires 2" —1 complex numbers. Formally talking, we are dealing with a
2"- dimensional space having associated a linearly independent set of vectors called a
base, in terms of which any vector or pure state ix) can be expressed. This kind of
vector space is know as Hilbert space. The states of the system in Hilbert space are
represented by unit length vectors. The superposition of states is represented as

21

>.a,S)

i=0

where @, are complex numbers representing the amplitudes such that
2

Zi’ail =1and each !Si> is a basis vector of that space. So at each step of the

computation the probability of seeing a state IS,.> is {ailz .For being able to use the

physical system for the computation we need to apply only unitary transformations to
the state vectors by means of unitary matrices (whose conjugate transpose is equal to

The Problem of Robot Random Motion Tracking Learning and Quantum Algorithms 217

its inverse) because the sum of all the possible outcomes must give as result 1. The
quantum circuits can only perform local 2-bit transformations but this is not a problem
because it can be proved that the 7 -bit transformations can be implemented using as
building blocks the 2-bit transformations. The 2-bit transformations or quantum gates
can be expressed as a truth table as follows:

|00) — | 00)

jo1) —»|o1)
;10)—»712?010)+|11))

{11)41/1_3010)+|11>)

The truth table above can be expressed with a matrix as follows

W |ou | ooy |ony| oty |in) |
|00) 1 0 |o

j01) 0 1 |o

1 1

110 0 0 | = | =

| > NG 2

. 1| L
1) 0 0 5 2

Assuming as an example that the machine is in the following superposition of states
1 1

—=[10)——=|11

-4

and that we apply the unitary transformation shown in the matrix above, The machine
will go to the next transposition of states

75 (10)+]18)-—= (10)-[10) <11

From the example we can see that the interference effect that cancel the observation of
some states of the initial superposition. Another feature that we have un quantum
computing and that it absent int classical computing is the reversibility of the
calculation. As a consequence a deterministic computation is performable on a
quantum computer only if it is reversible. There exist universal gates for computing

218 Rodriguez Lucatero C.

reversibly called Toffoli gates and Fredkin gates that use extra input (controlled NOT)
and output wires and that need to reset to 0 some output wires as a mcthod for
avoiding to have interference at the output wires. So we can replace classical AND or
NOT gates by Fredkin gates or NAND gates by Toffoli gates and turn a non-reversible
gate array into reversible one. For this end it is nceded to duplicate some input wires
and keep the extra output bits in a register. For more details on how to do that
efficiently see [9]. The modular exponentiation part of the factoring algorithm is the
place where more time and space is consumed. The best classical method to solve the
modular exponentiation is the repeated squaring that takes

O(I* log/loglog/) time and O(/log!loglog!) space for /-bit numbers. This
method uses the FET method for the multiplications and don’t scales up well for small
length numbers and in that case it is used the standard multiplication algorithm and the

time taken by modular exponentiation becomes of order O(*)and the space

becomes of order O(/) for computing (a,x°(modn)). Given that the quantum

computations necd unitary transformations and that the discrete Fourier
transformation is a unitary transformation that that allow us to transform states
corresponding to integers in binary representation on a computer, we can represent it
as matrix. So consider a number @ with 0 < @ < g where the number of bits of g is

-1
polynomial. We can transform a state la) toastate q'% tl c)exp(2riac/g)-
Py

That is that we apply the unitary matrix whose (a, C) entry is exp(27r iac/ q) . We
have to take g = 2! and the binary representation of a as [a,_,a,_2 K ao> . Then
we can build the transformation matrix Aq using two type of quantum gates that will

operate on the jth bit. These gates can be defined as follows

R
22
100 0
010 0

SA:

#7010
000 &

that operates on bits in positions j and & for j < k .and where &,_; = /2%

To perform the Fourier transformation the matrix multiplications have to be applied in
general as follows

RI—ISI RI—ZS I—J,I—lS/—J,I—ZRI—J K Rl SO,I—Z K SO,ZSO,I R()

21

The Problem of Robot Random Motion Tracking Learning and Quantum Algorithms 219

If we take g = 2’ for the Fourier transform A, we will need /(I —1)/2 quantum
gates.

The prime factorization problem have interested the mathematicians since the Euclid
times and even before. From the number theory ficld it is know that any number n
has a unique prime factor decomposition. The best factoring algorithm takes
exp(c(log 1n)'"*(loglog n)”3) for some constant , and given that the input 7 can
be represented by log 7 bits, this algorithm is exponential. By other side, it is known
that the factorization problem can be reduced to the problem of finding the order of an
element by means random algorithms. Because of that the Shor algorithm proposed in
[9] in order to do factorization for breaking RSA cryptosystem, it compute order or

period of a function several times using th QFT (Quantum Fourier Transform). The
basic idea of the algorithm is:

1. to create a state with a period we need to determine
2. to apply QFT to get rid of the offset
3. to extract the period by computation

So given that the random robot motion strategies use CSB generators for calculating

the next move, and that it is equivalent to the prime factorization of a number, we can
enounce our second result as follows.

Theorem 2: The problem of tracking a target robot that behaves randomly can be

learned in expected polynomial-time using the Shor prime factorization oT™
algorithm.

We have supposed along the present article that the target robot follows all the time a
random strategy of movements. We can try to explore the case where the robot
follows for some time a DFA (DETERMINISTIC FINITE AUTOMATA) and
suddenly when it get stuck in a local minima, he starts a random walk, as is the case of
robots following a path calculated by a planner of the kind proposed by Barraquand &
Latombe in [11] or Erdmann in [16]. If we apply our DFA learning algorithm we can
loss the rarget robot. So what we propose as solution is to run in parallel our DFA
learning algorithm and quantum algorithm.

7. Conclusions and Future Work

As we have shown in the present paper, the random robot motion tracking problem is
not polynomial-time solvable under the standard TM by relating it with prime
factorization problem. As consequence we have proposed an altemative to cope with
this negative result by means of the application of quantum algorithms. As a future
work we can explore what happen in the case of using quantum versions of a CSB
generators. Another possible future research can be the mixed situation mentioned at
the end of the section 6 of the present article.

220 Rodrigue= Lucatero C.

References
1. Carlos Rodrigucz Lucatero & Rafael Lozano Espinosa, Application of automata
learning algorithms to robot motion tracking, Proceedings ISPRA2005 Austria,

2005.
C.Rodriguez Lucatero, A. de Albonoz & R. Lozano E., A game theory approach

2:
to the robot tracking problem, WSEAS Transactions on Computers, Issue 4,
Volume 3, ISSN 1109-2750, 862-868, October 2004.

3. Dana Angluin, A note on the number of queries needed to identify regular

languages, Information and Control, 51, 76-87, 1981.

4. SM. La Valle, HH. Gonzilez Baiios, Craig Becker, & J.C. Latombe, Motion
Strategies for Maintaining Visibility of a Moving Target, Proceedings of the IEEE
International Conference on Robotics and Automation, 731-736,April 1997.

5. S.M. La Valle, David Lin, Leonidas J. Guibas, J.C. Latombe & Rajeev Motwani,

Finding an Unpredictable Target in a Workspace with Obstacles, Proceedings of

the IEEE International Conference on Robotics and Automation, April 1997.

M.L. Littman, Markov games as a framework for multiagent reinforcement

learning, Proceedings of the eleventh International Conference on Machine

Learning, 157-163 ,1994.

7. R. Murrieta-Cid, H.H. Gonzalez-Bafios & B. Tovar, A Reactive Motion Planner to
Maintain Visibility of Unpredictable Targets, Proceedings of the IEEE
International Conference on Robotics and Automation, 2002.

8. Christos H. Papadimitriou & John N.Tsitsiklis, The complexity of Markov
decision processes, Mathematics of Operations Research, Vol. 12, No. 3, August

1987.

9. Peter W. Shor, Polynomial time algorithms for prime factorization and discrete
logarithms on quantum computer. SIAM Journal on computing, 26 (5):1484-1509,
1997.

10. Ariel Rubinstein, Finite Automata Play the Repeated Prisioner’s Dilemma,
Journal of Economic Theory, 39, 83-96, 1986.

11.JBarraquand & JC. Latombe, Robot Motion Planning: A distributed
representation approach, STAN-CS-89-1257, Technical report CS. Dept. Stanford
University , 1989.

12.Dana Angluin, Jeffery Westbrook, & Wenhong Zhu, Robot Navigation with
range Queries, ACM STOC 96, 469-478, 1996.

13.Ronald L. Rivest, & Robert E. Schapire, Inference of Finite Automata using
Homing Sequences, Information and Computation, 103, 299-347, 1993.

14. A. Blum, P. Raghavan & B. Schieber, Navigating in unfamiliar geometric terrain,
ACM STOC 91, 494-504, 1991.

15.V. Lumelsky & A. Stepanov, Path planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape, d/goritmica, 2,
403-430, 1987.

16. Erdmann, M.A., On Probabilistic Strategies for Robot Tasks, MIT Artificial
Intelligence Laboratory, Technical Report, 1990.

17. C.H.Papadimitriou & M. Yannakakis, On Complexity as bounded rationality,
STOC94 ACM, Montreal, Quebec, Canada, 726-733, 2004.

18.R. Axelrod, The Evolution of Cooperation, Basic Books, 1984.

The Problem of Robot Random Motion Tracking Learning and Quantum Algorithms 221

19.M.Keams & L. Valiant Cryptographic limitation on leaming Boolcan formulae
and finite automata , Proc. 2/th ACM Symposium on Theory of C: ti
433-444, May 1989. 77 of Computing .pag

20.L. Pitt & M.K. Warmuth, The minimal consistent DFA problem cannot be
approximated within any polynomial, JACM 40(1):95-142, January 1993,

21.Shamir A. , On the generation of cryptographically strong pseudorand
sequences, ACM Trans. Comput. Syst. 1, 1:38-44, Feb. 1983, e P orandom

22.David Carmel & Shaul Markovitch, Learning Models of In
Technical Report CIS9606 Technion, 1996.

23.David Carmel & Shaul Markovitch, How to explore your of
(almost) optimally, Proceedings ICMAS98 Paris France, 1998,

24.0ded Goldreich, Shafi Goldwasser & Silvio Micali , How to construct
random functions, JACM Vol. 33, No. 4, pp 792-807, October 1986.

telligent Agents,

ponent’s strategy

